6. МЕТОДЫ РАСЧЕТА ЗНАЧЕНИЙ КРИТЕРИЕВ ПОЖАРНОЙ ОПАСНОСТИ НАРУЖНИХ УСТАНОВОК
МЕТОД РАСЧЕТА ЗНАЧЕНИЙ КРИТЕРИЕВ ПОЖАРНОЙ ОПАСНОСТИ ДЛЯ ГОРЮЧИХ ГАЗОВ И ПАРОВ
Выбор и обоснование расчетного варианта
36. Выбор расчетного варианта следует осуществлять с учетом годовой частоты реализации и последствий тех или иных аварийных ситуаций. В качестве расчетного для вычисления критериев пожарной опасности для горючих газов и паров следует принимать вариант аварии, для которого произведение годовой частоты реализации этого варианта Qw и расчетного избыточного давления Р при сгорании газопаровоздушных смесей в случае реализации указанного варианта максимально, то есть:
G=Qw * P=max. (26)
Расчет величины G производится следующим образом:
а) рассматриваются различные варианты аварии и определяются из статистических данных или на основе годовой частоты аварий со сгоранием газопаровоздушных смесей Qwi для этих вариантов;
б) для каждого из рассматриваемых вариантов определяются по изложенной ниже методике значения расчетного избыточного давления Pi;
в) вычисляются величины Gi=Qwi * Pi для каждого из рассматриваемых вариантов аварии, среди которых выбирается вариант с наибольшим значением Gi;
г) в качестве расчетного для определения критериев пожарной опасности принимается вариант, в котором величина Gi максимальна. При этом количество горючих газов и паров, вышедших в атмосферу, рассчитывается, исходя из рассматриваемого сценария аварии с учетом пунктов 38-43.
37. При невозможности реализации описанного выше метода в качестве расчетного следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в образовании горючих газопаровоздушных смесей участвует наибольшее количество газов и паров, наиболее опасных в отношении последствий сгорания этих смесей. В этом случае количество газов и паров, вышедших в атмосферу, рассчитывается в соответствии с пунктами 38-43.
38. Количество поступивших веществ, которые могут образовывать горючие газовоздушные или паровоздушные смеси, определяется, исходя из следующих предпосылок:
а) происходит расчетная авария одного из аппаратов согласно п. 36 или п. 37 (в зависимости от того, какой из подходов к определению расчетного варианта аварии принят за основу);
б) все содержимое аппарата поступает в окружающее пространство;
в) происходит одновременно утечка веществ из трубопроводов, питающих аппарат по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов.
Расчетное время отключения трубопроводов определяется в каждом конкретном случае, исходя из реальной обстановки, и должно быть минимальным с учетом паспортных данных на запорные устройства, характера технологического процесса и вида расчетной аварии.
Расчетное время отключения трубопроводов следует принимать равным:
- времени срабатывания систем автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0, 000001 в год или обеспечено резервирование ее элементов (но не более 120 с);
- 120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;
- 300 с при ручном отключении.
Не допускается использование технических средств для отключения трубопроводов, для которых время отключения превышает приведенные выше значения.
Под "временем срабатывания" и "временем отключения" следует понимать промежуток времени от начала возможного поступления горючего вещества из трубопровода (перфорация, разрыв, изменение номинального давления и т.п.) до полного прекращения поступления газа или жидкости в окружающее пространство. Быстродействующие клапаны-отсекатели должны автоматически перекрывать подачу газа или жидкости при нарушении электроснабжения.
В исключительных случаях в установленном порядке допускается превышение приведенных выше значений времени отключения трубопроводов специальным решением соответствующих министерств или ведомств по согласованию с Госгортехнадзором России на подконтрольных ему производствах и предприятиях и МЧС России;
г) происходит испарение с поверхности разлившейся жидкости; площадь испарения при разливе на горизонтальную поверхность определяется (при отсутствии справочных или иных экспериментальных данных), исходя из расчета, что 1 л смесей и растворов, содержащих 70% и менее (по массе) растворителей, разливается на площади 0,10 м2, а остальных жидкостей - на 0,15 м2;
д) происходит также испарение жидкостей из емкостей, эксплуатируемых с открытым зеркалом жидкости, и со свежеокрашенных поверхностей;
е) длительность испарения жидкости принимается равной времени ее полного испарения, но не более 3600 с.
39. Масса газа m, кг, поступившего в окружающее пространство при расчетной аварии, определяется по формуле
m =(Va +Vт)*pг, (27)
где Va - объем газа, вышедшего из аппарата, м3; Vт - объем газа вышедшего из трубопровода, м3; pг - плотность газа, кг*м-3.
При этом
Va=0,01*Р1*V, (28)
где Р1 - давление в аппарате, кПа; V -объем аппарата, м3;
Vт=V1т+V2т, (29)
где V1т - объем газа, вышедшего из трубопровода до его отключения, м3;
V2т - объем газа, вышедшего из трубопровода после его отключения, м3;
V1т = q*Т, (30)
где q - расход газа, определяемый в соответствии с технологическим регламентом в зависимости от давления в трубопроводе, его диаметра, температуры газовой среды и т.д., м3*с-1; Т - время, определяемое по п. 38, с;
(31)
где Р2 - максимальное давление в трубопроводе по технологическому регламенту, кПа; r - внутренний радиус трубопроводов, м; L - длина трубопроводов от аварийного аппарата до задвижек, м.
40. Масса паров жидкости m, кг, поступивших в окружающее пространство при наличии нескольких источников испарения (поверхность разлитой жидкости, поверхность со свеженанесенным составом, открытые емкости и т.п.), определяется из выражения
m=mр+mемк+mсв.окр+mпер, (32)
где mр - масса жидкости, испарившейся с поверхности разлива, кг; mемк - масса жидкости, испарившейся с поверхностей открытых емкостей, кг; mсв.окр - масса жидкости, испарившейся с поверхностей, на которые нанесен применяемый состав,кг; mпер - масса жидкости, испарившейся в окружающее пространство в случае ее перегрева, кг.
При этом каждое из слагаемых (mр, mемк, mсв.окp) в формуле (32) определяют из выражения
m=W*Fи*Т, (33)
где W - интенсивность испарения, кг*с-1*м-2; Fи - площадь испарения, м2, определяемая в соответствии с п. 38 в зависимости от массы жидкости mп, вышедшей в окружающее пространство; Т- продолжительность поступления паров легковоспламеняющихся и горючих жидкостей в окружающее пространство согласно п.38, с.
Величину mпер определяют по формуле (при Та> Ткип)
(34)
где mп - масса вышедшей перегретой жидкости, кг; Ср -удельная теплоемкость жидкости при температуре перегрева жидкости Та, Дж*кг-1*К-1; Та - температура перегретой жидкости в соответствии с технологическим регламентом в технологическом аппарате или оборудовании, К; Ткип - нормальная температура кипения жидкости, К; Lисп - удельная теплота испарения жидкости при температуре перегрева жидкости Та, Дж *кг-1.
Если аварийная ситуация связана с возможным поступлением жидкости в распыленном состоянии, то она должна быть учтена в формуле (32) введением дополнительного слагаемого, учитывающего общую массу поступившей жидкости от распыляющих устройств, исходя из продолжительности их работы.
41. Масса mп вышедшей жидкости, кг, определяется в соответствии с п. 38.
42. Интенсивность испарения W определяется по справочным и экспериментальным данным. Для ненагретых ЛВЖ при отсутствии данных допускается рассчитывать W по формуле
(35)
где М -молярная масса, г*моль-1; Рн- давление насыщенного пара при расчетной температуре жидкости, определяемое по справочным данным в соответствии с требованиями п. 3, кПа.
43. Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу испарившегося СУГ mсуг из пролива, кг*м-2, по формуле
(36)
где М - молярная масса СУГ, кг*моль-1; Lисп - мольная теплота испарения СУГ при начальной температуре СУГ Тж, Дж*моль-1; То - начальная температура материала, на поверхность которого разливается СУГ, К; Тж - начальная температура СУГ, К; тв - коэффициент теплопроводности материала, на поверхность которого разливается СУГ, Вт*м-1*К-1;
- коэффициент температуропроводности материала, на поверхность которого разливается СУГ, м2*с-1; Ств - теплоемкость материала, на поверхность которого разливается СУГ, Дж*кг-1*К-1; ртв - плотность материала, на поверхность которого разливается СУГ, кг*м-3; t - текущее время, с, принимаемое равным времени полного испарения СУГ, но не более 3600 с; - число Рейнольдса; U - скорость воздушного потока, м*с-1; - характерный размер пролива СУГ, м; vв -кинематическая вязкость воздуха, м2*с-1; в - коэффициент теплопроводности воздуха, Вт*м-1*К-1.
Формула 38 справедлива для СУГ с температурой Тж<Ткип. При температуре СУГ Тж > Ткип/ дополнительно рассчитывается масса перегретых СУГ mпер по формуле 34.
Расчет горизонтальных размеров зон, ограничивающих газо- и паровоздушные смеси с концентрацией горючего выше НКПР, при аварийном поступлении горючих газов и паров ненагретых легковоспламеняющихся жидкостей в открытое пространство
44. Горизонтальные размеры зоны, м, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени (Снкпр), вычисляют по формулам:
-для горючих газов (ГГ):
(37)
- для паров ненагретых легковоспламеняющихся жидкостей (ЛВЖ):
, (38)
,
где mг - масса поступивших в открытое пространство ГГ при аварийной ситуации, кг; рг - плотность ГГ при расчетной температуре и атмосферном давлении, кг*м-3; mп - масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг; рп - плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг*м-3; Рн - давление насыщенных паров ЛВЖ при расчетной температуре, кПа; К - коэффициент, принимаемый равным К=Т/3600 для ЛВЖ; Т- продолжительность поступления паров ЛВЖ в открытое пространство, с; Снкпр - нижний концентрационный предел распространения пламени ГГ или паров ЛВЖ, % (об.); M - молярная масса, кг*кмоль-1; V0 - мольный объем, равный 22,413 м3*кмоль-1; tр - расчетная температура, oС. В качестве расчетной температуры следует принимать максимально возможную температуру воздуха в соответствующей климатической зоне или максимальную возможную температуру воздуха по технологическому регламенту с учетом возможного повышения температуры в аварийной ситуации. Если такого значения расчетной температуры tр по каким-либо причинам определить не удается, допускается принимать ее равной 61 oС.
45. За начало отсчета горизонтального размера зоны принимают внешние габаритные размеры аппаратов, установок, трубопроводов и т.п. Во всех случаях значение Rнкпр должно быть не менее 0,3 м для ГГ и ЛВЖ.
Расчет избыточного давления и импульса волны давления при сгорании смесей горючих газов и паров с воздухом в открытом пространстве
46. Исходя из рассматриваемого сценария аварии, определяется масса m, кг, горючих газов и (или) паров, вышедших в атмосферу из технологического аппарата в соответствии с пунктами 38-43.
47. Величину избыточного давления Р, кПа, развиваемого при сгорании газопаровоздушных смесей, определяют по формуле
, (39)
где Р0 - атмосферное давление, кПа (допускается принимать равным 101 кПа); r- расстояние от геометрического центра газопаровоздушного облака, м; mпр -приведенная масса газа или пара, кг, вычисляется по формуле
mпр=(Qсг/Q0)*m*Z, (40)
где Qсг - удельная теплота сгорания газа или пара, Дж*кг-1; Z- коэффициент участия горючих газов и паров в горении, который допускается принимать равным 0,1; Q0 - константа, равная 4,52*106 Дж*кг-1; m - масса горючих газов и (или) паров, поступивших в результате аварии в окружающее пространство, кг.
48. Величину импульса волны давления i, Па*с, вычисляют по формуле
i =123*mпр0,66/r. (41)
МЕТОД РАСЧЕТА ЗНАЧЕНИЙ КРИТЕРИЕВ ПОЖАРНОЙ ОПАСНОСТИ ДЛЯ ГОРЮЧИХ ПЫЛЕЙ
49. В качестве расчетного варианта аварии для определения критериев пожарной опасности для горючих пылей следует выбирать наиболее неблагоприятный вариант аварии или период нормальной работы аппаратов, при котором в горении пылевоздушной смеси участвует наибольшее количество веществ или материалов, наиболее опасных в отношении последствий такого горения.
50. Количество поступивших веществ, которые могут образовывать горючие пылевоздушные смеси, определяется, исходя из предпосылки о том, что в момент расчетной аварии произошла плановая (ремонтные работы) или внезапная разгерметизация одного из технологических аппаратов, за которой последовал аварийный выброс в окружающее пространство находившейся в аппарате пыли.
51. Расчетная масса пыли, поступившей в окружающее пространство при расчетной аварии, определяется по формуле
М=Мвз +Мав, (42)
где М - расчетная масса поступившей в окружающее пространство горючей пыли, кг, Мвз - расчетная масса взвихрившейся пыли, кг; Мав - расчетная масса пыли, поступившей в результате аварийной ситуации, кг.
52. Величина Мвз определяется по формуле
Мвз=Кг *Квз*Мп, (43)
где Кг - доля горючей пыли в общей массе отложений пыли; Квз - доля отложенной вблизи аппарата пыли, способной перейти во взвешенное состояние в результате аварийной ситуации. В отсутствие экспериментальных данных о величине Квз допускается принимать Квз = 0,9; Мп - масса отложившейся вблизи аппарата пыли к моменту аварии, кг.
53. Величина Мав определяется по формуле
Мав=(Мап +q*Т)*Кп, (44)
где Мап - масса горючей пыли, выбрасываемой в окружающее пространство при разгерметизации технологического аппарата, кг; при отсутствии ограничивающих выброс пыли инженерных устройств следует полагать, что в момент расчетной аварии происходит аварийный выброс в окружающее пространство всей находившейся в аппарате пыли; q- производительность, с которой продолжается поступление пылевидных веществ в аварийный аппарат по трубопроводам до момента их отключения, кг*с-1; Т -расчетное время отключения, с, определяемое в каждом конкретном случае, исходя из реальной обстановки. Следует принимать равным времени срабатывания системы автоматики, если вероятность ее отказа не превышает 0,000001 в год или обеспечено резервирование ее элементов (но не более 120 с); 120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов; 300 с при ручном отключении; Кп - коэффициент пыления, представляющий отношение массы взвешенной в воздухе пыли ко всей массе пыли, поступившей из аппарата. В отсутствие экспериментальных данных о величине Кп допускается принимать: 0,5 - для пылей с дисперсностью не менее 350 мкм; 1,0 - для пылей с дисперсностью менее 350 мкм.
54. Избыточное давление Р для горючих пылей рассчитывается следующим образом:
а) определяют приведенную массу горючей пыли mпр, кг, по формуле
mпр=M*Z*Hт/Hто, (45)
где M - масса горючей пыли, поступившей в результате аварии в окружающее пространство, кг; Z- коэффициент участия пыли в горении, значение которого допускается принимать равным 0,1. В отдельных обоснованных случаях величина Z может быть снижена, но не менее чем до 0,02; Hт - теплота сгорания пыли, Дж*кг-1; Hто - константа, принимаемая равной 4,6*106Дж*кг-1;
б) вычисляют расчетное избыточное давление Р, кПа, по формуле
Р=Р0*(0,8mпр0,33/r+3mпр0,66/r2+5mпр/r3), (46)
где r - расстояние от центра пылевоздушного облака, м. Допускается отсчитывать величину r от геометрического центра технологической установки; Р0 - атмосферное давление, кПа.
55. Величину импульса волны давления i, Па*с, вычисляют по формуле
i=123mпр0,66/r. (47)
МЕТОД РАСЧЕТА ИНТЕНСИВНОСТИ ТЕПЛОВОГО ИЗЛУЧЕНИЯ
56. Интенсивность теплового излучения рассчитывают для двух случаев пожара (или для того из них, который может быть реализован в данной технологической установке):
- пожар проливов ЛВЖ, ГЖ или горение твердых горючих материалов (включая горение пыли);
- "огненный шар" - крупномасштабное диффузионное горение, реализуемое при разрыве резервуара с горючей жидкостью или газом под давлением с воспламенением содержимого резервуара.
Если возможна реализация обоих случаев, то при оценке значений критерия пожарной опасности учитывается наибольшая из двух величин интенсивности теплового излучения.
57. Интенсивность теплового излучения q, кВт*м-2, для пожара пролива жидкости или при горении твердых материалов вычисляют по формуле
q=Еf Fq*, (48)
где Еf - среднеповерхностная плотность теплового излучения пламени, кВт*м-2; Fq- угловой коэффициент облученности; - коэффициент пропускания атмосферы.
Значение Еf принимается на основе имеющихся экспериментальных данных. Для некоторых жидких углеводородных топлив указанные данные приведены в табл. 8.
При отсутствии данных допускается принимать величину Еf равной: 100кВт*м-2 для СУГ, 40 кВт*м-2 для нефтепродуктов, 40 кВт*м-2 для твердых материалов.
Таблица 8
Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородных топлив
Топливо | Еf , кВт*м-2 | М,КГ*М-2*с-1 |
d= 10 м | d= 20 м | d= 30 м | d= 40 м | d= 50 м |
CПГ (Метан) | 220 | 180 | 150 | 130 | 120 | 0,08 |
СУГ (Пропан-бутан) | 80 | 63 | 50 | 43 | 40 | 0,10 |
Бензин | 60 | 47 | 35 | 28 | 25 | 0,06 |
Дизельное топливо | 40 | 32 | 25 | 21 | 18 | 0,04 |
Нефть | 25 | 19 | 15 | 12 | 10 | 0,04 |
_________
Примечание. Для диаметров очагов менее 10 м или более 50 м следует принимать величину Еf такой же, как и для очагов диаметром 10 м и 50 м соответственно
Рассчитывают эффективный диаметр пролива d, м, по формуле
(49)
где F площадь пролива, м2.
Вычисляют высоту пламени Н, м, по формуле
, (50)
где М - удельная массовая скорость выгорания топлива, кг*м-2*с-1; рВ - плотность окружающего воздуха, кг*м-3; g = 9,81 м*с-2 - ускорение свободного падения.
Определяют угловой коэффициент облученности Fq по формулам:
, (51)
где Fv, Fн - факторы облученности для вертикальной и горизонтальной площадок соответственно, определяемые с помощью выражений:
, (52)
, (53)
А=(h2+S2+1)/(2*S); (54)
B=(1+S2)/(2*S); (55)
S=2r/d; (56)
h=2H/d, (57)
где r - расстояние от геометрического центра пролива до облучаемого объекта, м.
Определяют коэффициент пропускания атмосферы по формуле
=ехр[-7,0*10-4*(r-0,5d)] (58)
58. Интенсивность теплового излучения q, кВт*м-2, для "огненного шара" вычисляют по формуле (48).
Величину Еf определяют на основе имеющихся экспериментальных данных. Допускается принимать Еf равным 450 кВт*м-2.
Значение Fq вычисляют по формуле
, (59)
где Н - высота центра "огненного шара", м; Ds - эффективный диаметр "огненного шара", м; r - расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром "огненного шара", м.
Эффективный диаметр "огненного шара" Ds определяют по формуле
Ds=5,33m0,327, (60)
где m - масса горючего вещества, кг.
Величину Н определяют в ходе специальных исследований. Допускается принимать величину Н равной Ds/2.
Время существования "огненного шара" ts, с, определяют по формуле
ts=0,92m0,303 (61)
Коэффициент пропускания атмосферы t рассчитывают по формуле
, (62)